
 

 

 

 

 

 

 

 

 

 

GENETIC STRUCTURE AND DEMOGRAPHIC ANALYSIS OF  

KEY DEER (ODOCOILEUS VIRGINIANUS CLAVIUM) 

 

 

 

 

 

 

 

by 

 

 

VICKI LEE VILLANOVA 

B.S. University of Florida, 2012 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements 

for the degree of Master of Science 

in the Department of Biology 

in the College of Sciences 

at the University of Central Florida 

Orlando, Florida 

 

 

 

 

 

Spring Term 

2015 

 

 

 

Major Professor: Eric A. Hoffman 



 

ii 

 

ABSTRACT 

Recent improvements in genetic analyses have paved the way in using molecular data to 

answer questions regarding evolutionary history, genetic structure, and demography. Key deer 

are a federally endangered subspecies assumed to be genetically unique (based on one allozyme 

study), homogeneous, and have a female-biased population of approximately 900 deer. I used 

985bp of the mitochondrial cytochrome b gene and 12 microsatellite loci to test two hypotheses: 

1) if the Moser Channel is a barrier to gene flow, I should expect that Key deer are differentiated 

and have reduced diversity compared to mainland deer and (2) if isolation on islands leads to a 

higher probability of extinction, I should expect that Key deer exhibit a small population size and 

a high risk of extinction. My results indicate that Key deer are genetically isolated from mainland 

white-tailed deer and that there is a lack of genetic substructure between islands. While Key deer 

exhibit reduced levels of genetic diversity compared to their mainland counterparts, they contain 

enough diversity of which to uniquely identify individual deer. Based on genetic identification, I 

estimated a census size of around 1,000 individuals with a heavily skewed female-biased adult 

sex ratio. Furthermore, I combined genetic and contemporary demographic data to generate a 

species persistence model of the Key deer. Sensitivity tests within the population viability 

analysis brought to light the importance of fetal sex ratio and female survival as the primary 

factors at risk of driving the subspecies to extinction.  
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CHAPTER ONE: INTRODUCTION 

In the past, scientists have utilized both demographics and genetics as a means to address 

the conservation of species of concern (e.g. Petit et al. 1998; Degner et al. 2007; Bristol et al. 

2013; Grayson et al. 2014; Robert et al. 2015). Despite that both demographics and genetics have 

utility in devising plans for long-term conservation planning, researchers have argued about 

which data type provides the best evidence for short-term planning (Lande 1988; Caughley 1994; 

Hedrick et al. 1996). Demographically, when there are too few individuals in a population, 

random factors such as demographic stochasticity, environmental variation, and rare catastrophic 

events  may drive a population to extinction (Gilpin & Soule 1986; van Noordwijk 1994). For 

example, in 1980 the endangered dusky seaside sparrow experienced a severe bottleneck, due to 

habitat alteration, in which the population declined to only six individuals. Consequently, those 

six individuals were all male, condemning the population to eventual extinction (Avise & Nelson 

1989). On the other hand, genetic drift can also put populations at risk of extinction by loss of 

genetic diversity (e.g. Miller & Lambert 2004; Cheng et al. 2012) . For small populations genetic 

drift can increase the probability that deleterious alleles will increase in frequency and that rare 

alleles will be lost from the population (Soule 1973). In the 1990s, the Florida panther (Puma 

concolor coryi) was exhibiting kinked tails, cowlicks, and sperm and heart defects as a result of 

inbreeding depression (Roelke et al. 1993). To battle the possible extinction of the subspecies, 

management brought Texas cougars (P. c. stanleyana), the closest geographical population, to 

Florida (Pimm et al. 2006). The introduction of genetic diversity reduced the effects of 

inbreeding depression and encouraged the recovery of the Florida panther (Johnson et al. 2010). 

Collectively, demographic instability and reduced genetic diversity can increase the chance of 
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populations being caught in an extinction vortex (van Noordwijk 1994; Tanaka 2000), where 

small populations succumb to inbreeding depression and genetic drift leading to a further 

reduction in genetic diversity over time, and hence, reduces population size further. Ultimately, 

the understanding of both demographics and diversity are crucial in small populations. 

Historically, dissimilarity in sample collection between genetics and demographics 

limited researchers to choose which type of data to use for the investigation of how best to 

conserve a species. Genetic data have proven to be powerful given their ability to assess loss of 

genetic diversity relative to non-endangered species (e.g. O’Leary et al. 2014), amount of gene-

flow among populations (e.g. Robinson et al. 2012), and species delimitations (e.g. Brown et al. 

2014). Moreover, genetic techniques have facilitated the evaluation of historical demography 

though the estimation of population expansion (e.g. Hoffman & Blouin 2004) and admixture (e.g. 

Zachos et al. 2008) via mismatch distribution analysis and historical effective population size via 

coalescent techniques such as Bayesian skyline plots (e.g. Grazziotin et al. 2006).  Contemporary 

demographic techniques have addressed a separate but equally important set of questions with 

regard to conservation including age structure (e.g. Martins et al. 2006), survival (e.g. Pradel et 

al. 1997), and census size (e.g. Rice & Harder 1977; Cantor et al. 2012).  

Recent advances in analyses have enabled genetic techniques to evaluate questions of 

contemporary demography, opening the door for studies that combine the investigation of genetic 

diversity, structure and evolutionary history with estimates of contemporary demographic 

parameters. In combination, these techniques can provide an improved view of conservation for a 

particular species. A major step enabling combined genetic/demographic analyses was the 

acquisition of noninvasive genetic material facilitating researchers to incorporate genetic data as a 
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means to estimates census size (e.g. Mowat & Paetkau 2002; Boersen et al. 2003; Coster et al. 

2011; Morán-Luis et al. 2014) and sex ratio (e.g Lindsay & Belant 2008; Brinkman & 

Hundertmark 2009; Morán-Luis et al. 2014). However, few studies have used genetic data to 

simultaneously answer questions regarding genetic diversity, structure and evolutionary history as 

well as contemporary demographic questions (e.g. Sugimoto et al. 2014). Moreover, the 

combination of these genetic and demographic data can be combined in predictive models to 

evaluate the long-term survivability of the species of interest. These models [i.e. population 

viability analysis (PVAs)] incorporate genetic information, life history data and estimates of 

population parameters, alongside probabilistic functions of stochastic events, to determine the 

probability of persistence of a species. 

In this study, I sought to evaluate how putative isolation of a wide-ranging species 

impacts genetic diversity, structure and evolutionary history as well as contemporary demography 

of Key deer (Odocoileus virginianus clavium), a subspecies of white-tailed deer (O. virginianus). 

Moreover, I used these data to generate a species persistence model (i.e. PVA) to evaluate the 

extinction probability of this island subspecies. Islands provide a model system in which to study 

the impact of small populations (Frankham 1998) and reduced genetic diversity (Frankham 

1997), as well as the evolutionary history of how natural fragmentation impacts continental 

species under quasi-isolated conditions. Insular populations are typically founded by only a few 

individuals (Frankham 1998). Thus, the initial founding population must be large enough to avoid 

detrimental stochastic events and contain adequate genetic variation to adapt under fragmented 

conditions; if not, the population will be unable to persist. Furthermore, taxa that reside on islands 

can be seen as a replicate of mainland populations, demonstrating how different selection 
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pressures may influence the species. Given their unique evolutionary history, islands provide an 

ideal setting to apply a combination of phylogeographic and demographic tools in which to 

elucidate how evolutionary history, genetic diversity, and demography have influenced the 

contemporary composition of a species. 

Florida contains a large density of near-shore islands which facilitate examining how 

insular systems impact population demography and genetic diversity. During the last glacial 

maximum, about 18,000 years ago, the landmass of Florida was much greater in area and 

extended beyond the Dry Tortugas (Lazell Jr. 1989). Eight thousand years later, with rising sea 

level associated with glacial retreat, the land south of modern day Florida became disjoined, with 

the intervening ocean establishing a geographical barrier between the mainland and the Florida 

Keys (Lazell Jr. 1989). The contemporary Florida Keys are categorized by three groups of 

islands: Upper, Middle, and Lower Keys. The Lower Keys are the farthest group of islands from 

the mainland and are separated from the Middle Keys by the 11-km wide Moser Channel. The 

Lower Keys contain numerous subspecies which were historically described based on geographic 

isolation and morphological distinction of mainland sister taxa. The largest of these taxa, Key 

deer, have been found to be genetically unique relative to their mainland sister taxa (Ellsworth et 

al. 1994). In addition to their genetic differentiation, Key deer have numerous physical (Hardin et 

al. 1976; Klimstra et al. 1991; Klimstra 1992) and behavioral characteristics (Hardin et al. 1976) 

which set them apart from their mainland counterparts. Additionally, anthropogenic influences 

have further impacted the natural history of Key deer. Most importantly, the subspecies was 

hunted to near extinction in the early 1950s and has been listed as federally endangered since 

1967 (USFWS 1999).  
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In general, this study sought to evaluate how genetic data can be used to evaluate genetic 

and contemporary demographic questions regarding the conservation status of Key deer. 

Specifically, I used the mitochondrial cytochrome b gene and variation present in 12 

microsatellite loci to assess two hypotheses. First, I hypothesized that if the Moser Channel is a 

barrier to gene flow, then Key deer should be differentiated and have reduced genetic diversity 

compared to mainland deer. This hypothesis is based on previous work conducted by Ellsworth et 

al. (1994), who identified a single, unique haplotype found in Key deer using restriction enzymes. 

This hypothesis is further supported by two sources of evidence: a) the geographic distance 

between the Keys and mainland Florida, which would suggest that Key deer are unable to 

disperse from the Keys to the mainland; and b) research of other insular species which has shown 

that island populations typically contain reduced levels of genetic diversity compared to their 

mainland counterparts (Frankham 1997). Second, I hypothesized that if isolation on islands leads 

to a higher probability of extinction, then Key deer should exhibit a small population size, a 

female-biased sex ratio, and a PVA analysis should indicate the fragility of the current population 

growth rate. This hypothesis is based on previous estimates of Key deer census size [even a 

consistent trend of 5% annual increase in Key deer census size (Lopez et al. 2004) starting with 

an estimate of 587 deer (Roberts 2005) would lead to a prediction of 900-1000 deer], sex ratio 

[studies on Key deer which have also shown a female-biased adult sex ratio (Lopez et al. 2003)], 

and studies that have shown that insular species exhibit higher risk of extinction, which are 

typically exacerbated by low genetic diversity, population size, and suboptimal habitat (Alcover 

et al. 1998; Frankham 1998; Manne et al. 1999; Ricklefs 2009).  
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CHAPTER TWO: METHODS 

Sampling 

In order to evaluate broad-scale differentiation of white-tailed deer throughout Florida, I 

collected tissue samples from 6 counties in Florida, USA (Fig. 1): Citrus (n=1), Santa Rosa (n=1), 

Collier (n=30), Palm Beach (n=8), Monroe (n=10), and Orange (n=30). Additionally, I collected 

samples from Ohio (n=2) and West Virginia (n=2) to compare with the Florida population. I also 

obtained 22 sequences from GenBank (Table 1) to determine where my samples fall into the 

greater New World deer phylogeny and to be used as outgroups.  All white-tailed deer samples 

were donated by individuals as a result of legal hunting, road kill, or by Florida Fish and Wildlife 

Conservation Commission. 

To compare genetic differentiation between mainland white-tailed deer and Key deer and 

to evaluate genetic structure and demography within Key deer, I additionally collected fecal (n= 

350) and tissue (n=21) samples from Key deer originating from No Name (NNK) and Big Pine 

Key (BPK) during two sampling sessions (Fig. 2). These two islands represent the core of the 

Key deer population and contain approximately 75% of the global Key deer population (Lopez 

2001). The initial sampling occurred from April 2013 through May 2013; the second session 

occurred from July 2013 until March 2014. To ensure that collections were sampled uniformly 

throughout NNK and BPK, I established 29 1-km grids covering these islands using ArcMap10. 

The size of grids was based on the monthly home range size of male Key deer (USFWS 1999) 

and the amount of effort needed to collect fecal samples across the two islands. Using a random 

number generator, I assigned a direction and distance along the edge of each grid to mark the 

starting point of each transect. I then walked each transect in an approximate straight line to a 
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point 1-km away on the opposite side of the grid. Along each transect, I continuously searched 

for piles of fecal pellets. Pellet groups which were scattered or contained an abnormally high 

amount of pellets were not collected in order to reduce the risk of a sample being from multiple 

individuals. Additionally, only pellet groups which appeared to be shiny with a mucus sheen were 

sampled to ensure the highest probability of successful DNA extraction (Brinkman et al. 2010). 

Moreover, I did not collect samples within 24 hours of rainfall to maximize collection of pellets 

with high DNA quality. Due to environmental conditions in the Keys, I could not estimate the 

number of days pellets were exposed to weather conditions. For each pellet group which met my 

criteria, I collected 6 pellets and georeferenced the sample site using a Garmin GPSmap 60CSx. I 

used fresh gloves for each pellet group and stored samples in Drierite desiccant (W. A. Hammond 

Drierite Co., Xenia, OH). Fecal samples were collected during the parturition season; however, 

fawn pellets are easily distinguished in size from adult and yearling pellets and were not collected 

in this study. In addition to the collection of fecal pellets, tissue samples were taken from Key 

deer using biopsy darts (PneuDart, Inc.) in grids with high human population density due to the 

difficulty in locating fecal pellets and the inability to walk a transect through private property. 

For sex identification, I used the same fecal samples which I collected for the previous 

objective. Additionally, for methodological control of sex identification, I collected fresh fecal 

samples from three Key deer males and three Key deer females. One control sample male was 

collected from BPK, the remaining five control samples were donated by the Ellie Schiller 

Homosassa Springs Wildlife State Park, Florida (samples collected from their captive Key deer 

population). These six fecal samples were only used to validate the methodology for sex 

identification and were not used in any other analyses.  
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DNA Extraction 

I extracted DNA from tissue using serapure beads following the protocol of Rohland & 

Reich (2012). Fecal DNA was extracted using two pellets following the QIamp Stool Kit 

(QIAGEN) manufacturer’s instructions with two modifications. First, to account for absorption of 

the lysis buffer and maximize DNA yield, I added the minimum amount of lysis buffer to each 

sample to obtain a final amount of 1.4mL lysis buffer. The amount of lysis buffer varied by 

sample depending on how much of the liquid was absorbed by the pellets. Second, I used 100uL 

of water heated to 70° C for the elution step, following recommendations by Tursi et al. (2013). 

DNA Amplification 

For the broad scale phylogenetic analyses, I sequenced 985 base pairs of the mtDNA 

cytochrome b gene. Amplification of the cytb gene was conducted in 40uL reactions using the 

following concentrations: 4uL of 10x PCR Buffer, 4uL of 25mM MgCl2, 4uL 10mM dNTP, 

0.4uL of DMSO, 1.8uL each of 10uM forward and reverse primer, 0.8uL of Taq polymerase, and 

4uL of DNA (50ng/uL). Primers were developed based on published mitochondrial genomes of 

O. virginianus within GenBank (Forward 5’-GTCATTCAACTACAAGAACACYA-3’; Reverse 

5’-TATTGAATGTACTACAAAGACTTA-3’). Amplification conditions were as follows: 5min 

at 95°C, 30 cycles of 1min at 95°C, 30sec at 54°C, 1min at 72°C, followed by a final extension 

for 15min at 72°C. Subsequent PCR product was sequenced at Eurofins Genomics and University 

of Arizona Genetics Core (UAGC).  

To assess fine scale genetic structure and demographic parameters, I genotyped all 

samples using twelve previously published polymorphic microsatellite loci which had been 
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optimized for O. virginianus (Table 2). Microsatellite PCR products were genotyped at UAGC. 

PCRs for fecal DNA were conducted in 15uL reactions using the following concentrations 0.3uL 

of 40mM dNTP, 1.5uL of GeneAmp® 10X PCR Gold Buffer, 0.15uL of DMSO, 0.1875uL of 

10uM forward primer, 0.75uL of 10uM 6-fam dye, 0.75uL of 10uM reverse primer, 0.15uL of 

AmpliTaq Gold® DNA Polymerase, and 1.5uL of DNA (specific concentration of MgCl2 are 

shown in Table 2). Amplification conditions were based on the protocol of Anderson et al. 

(2002). The following modifications were made for fecal DNA: initial denaturation of 5 minutes, 

followed by 40 cycles of 30sec at 95°C, 30sec at TA (specific annealing temperatures are shown 

in Table 2), and extension for 1 min at 95°C, followed by a final extension of 10 min at 72°C. For 

tissue DNA, the protocol was the same as for fecal DNA, but the initial denaturation conducted 

for 4min and the amplification was run for 35 cycles. All fecal samples were initially amplified 

across 12 loci under the optimal conditions. Samples which failed at greater than 50% of the loci 

were discarded from the study. The remaining samples were rerun under the same conditions if 

loci failed to amplify during the initial screening. Samples which failed to amplify a second time 

under the initial conditions were rerun at decreasing annealing temperature in 2 degree 

increments until an annealing temperature of 46°C was reached (Fig. 3). Samples which failed to 

display clear peaks went through the amplification temperature-cycle twice.  

Sex identification was determined using intron 7 of the zinc-finger locus (Lindsay & 

Belant 2008). Amplification of intron 7 was conducted in 10uL reactions following the protocol 

of Lindsay & Belant (2008). The X-linked allele (displayed for males and females) is visualized 

as a smaller band on a 2% agarose gel, while the Y-linked allele (males only) is double the size of 

the X-linked allele caused by an insertion in the Y-linked allele of intron 7. The larger, Y-linked, 
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allele is at greater risk of allelic dropout in degraded samples such as feces. To monitor allelic 

dropout, each PCR reaction was run with two positive controls: one male and one female. As 

previously stated, these positive controls were fecal pellets collected from Key deer with known 

sex. 

Analyses 

To address the genetic isolation of Key deer in hypothesis one, I edited cytb sequences in 

Sequencher v5.1 (Gene Codes Inc., Ann Arbor, MI, USA) and aligned the data in MEGA6 

(Tamura et al. 2013) using ClustalW. I first created a TCS network (Clement et al. 2000) using 

popART (http://popart.otago.ac.nz) to find unique haplotypes. Next, I determined the highest 

likelihood models of evolution for my cytb data and evaluated partitioning of the gene based on 

codon position using PartitionFinder v1.1.1 (Lanfear et al. 2012). I constructed a Bayesian 

phylogeny utilizing MrBayes v3.2.2 (Ronquist et al. 2012) and partitioned my data by first, 

second and third codon positions. Each partition was run under a separate model: HKY+G, 

K80+I, and HKY, respectively (see Results). I ran MrBayes with only unique haplotypes 

identified from TCS and with two independent runs of 5×10
6
 generations and the first 10,000 

trees were discarded as burn-in to generate the phylogeny. To evaluate mitochondrial diversity in 

terms of nucleotide and haplotype diversity, I used the program DnaSP v5.0 (Librado & Rozas 

2009). 

To assess nuclear genetic diversity and structure between the Keys and mainland and 

within the Keys, I first determined allele sizes using the program GENEMARKER (SoftGenetics, 

LLC) and used GenAlEx6 (Peakall & Smouse 2006) to assess if loci were in Hardy-Weinberg 
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Equilibrium (HWE) for each population. Next, I used FSTAT (Goudet 2001) to estimate levels of 

allelic richness and tested for significance between Key deer and mainland deer via Welch's t-test 

in R (R Core Team 2013). Finally, to test for structure within and between the mainland and the 

Keys I ran the program STRUCTURE (Pritchard et al. 2000) with 10 independent runs for each 

value of K (1-6), 100,000 burn-in, and 500,000 iterations. I used the Evanno method (Evanno et 

al. 2005) to estimate ΔK as implemented in the program STRUCTURE HARVESTER (Earl & 

VonHoldt 2011). To complement the findings in STRUCTURE, I estimated FST between the 

mainland and the Keys using the program GenePop v4.0 (Rousset 2008). 

I calculated the probability of identity (PID) and probability of sibling identity (Psib) using 

GenAlEx6 as a means to uniquely identify individuals. The ability to distinguish between 

individuals and siblings is crucial to calculating a census size and is based on the amount of 

genetic diversity within the population. I identified unique individuals and possible recaptures of 

the same individual utilizing two programs, which use different methods to correct for error. The 

first program, COLONY (Jones & Wang 2010), was used to determine full sibs under an 

assumption of a 20% error rate. The inclusion of an error rate corrects for known issues involving 

noninvasive genetic sampling such as allelic dropout and false alleles (Waits & Paetkau 2005). 

By including error into the analyses, I was able to account for inconsistencies in identifying 

recaptured individuals which may not be exact matches due to allelic dropout. I estimated 

genotyping error rates in the fecal samples by re-amplifying eleven loci across sixteen samples 

which had been shown to work successfully. The second program, CERVUS (Kalinowski et al. 

2007), identified unique individuals under the conditions of 4 mismatching loci and 6 matching 

loci. Assigned matches from COLONY and CERVUS were further scrutinized by eye to confirm 
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matching individuals. Any single allele that was identified as different between samples 

disqualified the classification of samples as matches. However, I allowed four instances of allelic 

dropout between possible matches. In many cases, four cases of allelic dropout were not required 

to have a match between individuals. Additionally, the majority of possible matches had missing 

data for at least one locus (e.g. matched at 10 loci with the eleventh locus missing entirely). To 

account for missing data, I recalculated PID and Psib for all matches such that the recalculated 

value only included loci in which data were present. If the PID and Psib did not exceed the 

threshold values of 0.001 and 0.05 (Schwartz & Monfort 2008), respectively, they were recorded 

as the same individual.   

To estimate census size, I used two methodologies: mark-recapture in the program MARK 

(White & Burnham 1999) and spatially-explicit capture recapture (SECR) in the package secr 

(Efford 2014) in R. In MARK, I used the standard closed capture model (Otis et al. 1978) which 

assumes that, for the duration of the experiment, the population does not change through 

immigration, emigration, births, or deaths. For the purpose of the study, I can assume that 

movement into and out of NNK and BPK are negligible given that the majority of the Key deer 

individuals inhabit these two islands (Barrett & Stiling 2006). I further evaluated the assumption 

of a closed system using the program CloseTest (Stanley & Burnham 1999). CloseTest tests for 

closure in time-specific data using the null hypothesis from Otis et al. (1978) against the Jolly-

Seber open model (Stanley & Burnham 1999). Since CloseTest suggested I met the assumptions 

of a closed capture model, I tested two biologically plausible closed capture models based on Otis 

et al. (1978). The first model assumed that the probability of capture and recapture remained 

equal and constant between first and second captures. The second model allowed time (sampling 
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occasion) to remain constant within captures, but vary between first and second captures. I used 

Akaike's Information Criterion (AICc, adjusted for sample size) to determine which model best 

explained the data. The second method to estimate census size utilized SECR analysis. SECR 

differs from traditional mark-recapture in that it includes individuals found in the same sampling 

session ("occasion") and uses the coordinates of each sample to estimate the density of Key deer. 

I generated a mask area based on the ArcMap shapefile of BPK and NNK using the maptools 

package in R. For the SECR analysis, I tested two models, following the same models I used in 

MARK, and assessed the best model using AICc. From the calculation of density estimated in 

secr, I multiplied this value by the area of BPK and NNK to estimate the census size (N=DA). 

Additionally, I estimated effective population size using COLONY to compare the amount of 

diversity present in the Keys population to the estimated census and calculated a census 

size/effective size ratio. 

To estimate the sex ratio within the Key deer population as part of the second hypothesis, 

I counted the number of males and females identified in the Key deer population using gel 

electrophoresis. The total number of males and females found in the Key deer population was 

then divided by the total number of samples which successfully amplified. 

Finally, I combined the genetic and demographic data into a species persistence model 

using the program VORTEX v10.0.8.0. Life history traits and genetic data were based on results 

from this study, previously published literature for Key deer, or standard VORTEX values (Table 

3). To determine aspects of the model that impacted species persistence, I ran 20 iterations for 

each model while changing individual model parameters, these included: catastrophes, mate 

monopolization, maximum age of male reproduction, levels of inbreeding depression, fecundity, 
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carrying capacity, fetal sex ratio, male survival, and female survival. Not all model parameters 

impacted probability of extinction (see Results); however, for those that did, I ran sensitivity 

analyses to determine how varying parameters related to persistence. Specifically, I varied 

percent males born (59%, 66%, and 74%) and female mortality in the sensitivity analyses. The 

values for fetal sex ratio represent the two published extremes (Hardin 1974; Folk & Klimstra 

1991) and an intermediate value. Adult female mortality was modeled using two methods: 

constant mortality rate and a function to account for negative density-dependent survival: 

=18*(EXP(N/K)/EXP(K/K)) 

with N=census size and K=carrying capacity. The constant in the equation for female mortality 

represents the published value for adult mortality (Lopez et al. 2003). In the sensitivity analyses, 

female mortality was evaluated under three different levels: decreased mortality (10% fawns, 

10% adults), baseline mortality (28% fawns, 18% adults), and increased mortality (38% fawns, 

28% adults). I ran the sensitivity analyses for 100 samples to model changes due to stochasticity. 

I simulated the data to look 50 years into the future and evaluate likelihood of persistence.   
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CHAPTER THREE: RESULTS 

Sequencing 

A total of 985bp were successfully amplified from 100 samples used for haplotype and 

phylogenetic analyses. From these samples, I identified 18 unique haplotypes (Fig. 4) which were 

used to create the phylogeny. The final tree was partitioned based on codon position and resulted 

in an average standard deviation of split frequencies of about 0.0029. Each codon was 

represented by a different model of DNA evolution: HKY+G,  K80+I, and HKY (Kimura 1980; 

Hasegawa et al. 1985), first, second, and third codon positions, respectively. 

Based on the haplotype network, the most distinct group (three haplotypes found in the 

Keys and Collier County) are separated by 23 base pairs from the next most closely related group. 

Within Ohio there are two haplotypes. One Ohio haplotype was shared between Ohio and Collier 

County and was more closely related to the samples from West Virginia than the Florida 

haplotypes. The second haplotype found in Ohio was more closely related to samples in Florida. 

Within the Keys, I found that all samples exhibit a single unique cytb haplotype. The Keys 

haplotype differs from its closest related haplotype, found in Collier County, by one base pair. 

The phylogeny produced interesting results with regards to Key deer, white-tailed deer, 

and placement of genera within New World deer. Based on the phylogenetic analysis, I found that 

Key deer, like mule deer (O. hemionus) are nested within white-tailed deer (Fig. 5). However, the 

genus Odocoileus itself forms a monophyletic clade, excluding O. virginianus 6 (Fig. 5). 

Additionally, two other genera within New World deer (Pudu and Mazama) formed a 

paraphyletic clade that includes the monophyletic Odocoileus clade (Fig. 5). 
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Population Genetics 

I found all 12 microsatellite loci were polymorphic within and among the mainland deer 

samples, whereas only 11 of the loci were polymorphic within the Key deer population. In the 

mainland I tested for Hardy-Weinberg equilibrium (HWE) in Collier, Orange, Monroe, and Palm 

Beach counties. After conducting a sequential Bonferroni correction (Rice 1989), only three loci 

were out of HWE (loci R and IGF1 in Collier County and locus R in Orange County). I saw no 

patterns of loci or populations that were consistently out of HWE; therefore, all populations and 

loci were used in downstream analyses, despite the possibility for low frequency null alleles in 

some populations. Citrus and Santa Rosa counties, as well as Ohio and West Virginia, were not 

tested for HWE due to small sample sizes. However, samples from these populations were not 

evaluated for within-population levels of genetic diversity or among-population genetic 

differentiation. In contrast to the mainland populations tested, the Keys population deviated from 

HWE expected values in 11 out of 12 loci. However, this result was not surprising given known 

issues associated with noninvasive genetic sampling (Waits & Paetkau 2005). The average error 

rate across all loci was 8.52% (Table 2). The one locus that did not deviated from HWE was 

Locus BL25, the monomorphic locus in the Keys. Average allelic richness varied from 3.37 in 

the Keys to 5.51 in Orange County (Table 4). Key deer were found to contain significantly 

reduced levels of allelic richness compared to the mainland population (Welch's t-test; t=-2.771, 

df=20.501, P= 0.012). Based on the genetic diversity estimate, the PID (2.4×10
-9

) and Psib (2.4×10
-

4
) were calculated to be less than the threshold (Schwartz & Monfort 2008) which allowed for the 

genetic tagging of individuals.  
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Based on STRUCTURE, I identified K=2 clusters as the best fit for the data using the 

Evanno et al.( 2005) method: the Keys and mainland Florida (Fig. 6). Although all pairwise FST 

values were significant except for the comparison between Collier and Monroe Counties, the 

numerical values were much greater between the Keys and the mainland (0.155 – 0.207) than 

among mainland populations (0.022 – 0.074; Table 5), further supporting that these populations 

fall into two clusters (i.e. mainland versus Keys). One caveat of the high FST value is that the 

Keys population is out of HWE leading to a possible inaccurate estimate of FST. However, Smith 

& Wang (2014) determined that when error rates are less than 20%, estimates of FST and genetic 

diversity are able to be evaluated. Only one locus exhibited an error rate above 20% (Table 2); 

hence, these data should reflect accurate estimates of differentiation between Keys and mainland 

populations.  

Demographics 

I was able to successfully genotype 164/350 samples collected (47% success rate). Combined 

with 21 tissue samples, I identified 173 unique deer to be used in downstream demographic 

analyses. Within sampling session one I found six matches (i.e. samples that were identical within 

the first sampling session), sampling session two had two matches. Comparisons between 

sampling sessions revealed eight recaptures of sampling session one deer in sampling session 

two. The model assumptions did not significantly (P=2.0) deviate from those of a closed 

population model based on the program CloseTest. In MARK and secr, the most supported model 

stated that the probability of capture remains constant within sampling sessions, but varies 

between sessions (Table 6). Both programs gave similar results: MARK estimated a census size 

of 986.69 (SE = 316.81) individuals and secr estimated 1,006.93 (SE = 242.30) individuals 
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(Table 6). These numbers are surprisingly higher than the genetic effective population size, which 

was estimated to be 11 individuals (95% CI: 6-28). Therefore, the ratio of effective/census 

population size is approximately 0.011. Finally, I was able to successfully amplify intron 7 of the 

zinc-finger locus in 70 samples. Out of the 70 samples, I was able to identify 65 females and five 

males showing a heavily female-biased adult population. 

Population Viability Assessment 

By altering individual parameters, I found that only two variables (female survival and 

fetal sex ratio) impacted long-term census size and species persistence of the Key deer. When all 

remaining variables were substituted with alternative values (Table 3), the model of species 

persistence was minimally impacted. In contrast, when female survival is increased or decreased 

beyond the value estimated from field data (Lopez et al. 2003), I found that female survival itself 

is the primary factor impacting persistence (Fig. 7). Whereas when female survival is at the value 

estimated from the field, persistence is dependent upon fetal sex ratio. Fetal sex ratio impacted 

the rate of extinction such that at higher male-biased fetal sex ratios (e.g. 74% males), extinction 

was reached more quickly (Fig. 7). Under all scenarios, when the species is extinction bound, 

density-dependent mortality slows the rate of extinction.  
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CHAPTER FOUR: DISCUSSION 

 

This study highlights the utility in using modern genetic techniques to answer questions 

related to both genetics and contemporary demography. My results indicate that Key deer are 

genetically isolated from mainland white-tailed deer and that there is a lack of genetic 

substructure between BPK and NNK. Moreover, Key deer exhibit reduced levels of genetic 

diversity compared to their mainland counterparts; however, they contain enough diversity of 

which to uniquely identify individual deer. Based on genetic identification, I estimated a census 

size of around 1,000 individuals with a heavily skewed female-biased adult sex ratio. Moreover, I 

was able to combine genetic and contemporary demographic data to generate a species 

persistence model of the Key deer. Sensitivity tests within the PVA brought to light the 

importance of fetal sex ratio and female survival as the primary factors at risk of driving the 

subspecies to extinction. Below, I discuss the evolutionary history of Key deer, contemporary 

demographic estimates of Key deer and how each of these factors contributes to species 

persistence. 

Evolutionary History 

Overall, I sequenced and acquired samples from GenBank in which to evaluate the 

phylogenetic relationship of three genera of New World deer (Odocoileus, Mazama and Pudu) as 

a means to determine the placement of Key deer within this phylogeny. I found that all three 

genera are paraphyletic. Pudu and Mazama are paraphyletic with regard to each other, which 

parallels the findings of Duarte et al. (2008) and Hassanin et al.(2012). Odocoileus is 

paraphyletic owing to a single sample of O. virginianus that was sampled from the most southern 



 

20 

 

part of the contiguous species range (i.e. Colombia). Other than this one sample, Odocoileus 

forms a monophyletic clade, which contains white-tailed deer, mule deer and Key deer. However, 

white-tailed deer are not monophyletic as both mule deer and Key deer are nested within the 

white-tailed deer phylogeny. The mule deer phylogenetic placement may be largely impacted by 

introgression between mule deer and white-tailed deer (Cathey et al. 1998). Key deer, on the 

other hand, are likely nested within white-tailed deer owing to the recent isolation of the 

population (6-10 kya; Lazell Jr., 1989). 

Focusing on Odocoileus found in Florida, I found that there is high haplotype diversity 

among all samples and even within populations. There are three possible causes to the high levels 

of diversity observed: translocation, historic polymorphism, and long distance dispersal. In the 

1900s, southeastern white-tailed deer were overexploited and subsequently restocked with deer 

ranging throughout the United States (Blackard 1971). Although in recent years, translocations 

have been stopped owing to measures to decrease the spread of chronic wasting disease (Garrison 

& Gedir 2006), historic translocations from previously isolated regions could leave the observed 

pattern. Historic polymorphism could also explain the pattern of diversity. Under this scenario, 

historic abundance and large effective population sizes of white-tailed deer could enable the 

retention of historic diversity even as drift causes haplotypes to be lost over time. Lastly, white-

tailed deer range throughout the Americas and have been shown to exhibit low structure between 

broad regions (Robinson et al. 2012), suggesting that long-distance dispersal can occur. However, 

males are the primary dispersers in white-tailed deer and thus are unlikely to impact mtDNA 

genetic structure. 



 

21 

 

Despite the haplotype diversity found within Florida, I did not identify high haplotype 

diversity in the Key deer. Indeed, Key deer all contained a single mtDNA haplotype. This 

haplotype was most closely related to two haplotypes from Collier County and these three 

haplotypes were quite distinct from the next closest haplotype (2.3% uncorrected sequence 

divergence). Key deer haplotype diversity indicates a lack of structure within Key deer. Although 

the lack of structure contrasts with studies of Key deer movement (Lopez 2001), it is paralleled 

by the nuclear markers, which supported a single panmictic population between BPK and NNK. 

In addition, I identified a reduced level of allelic richness relative to mainland deer, supporting 

the lack of gene flow between Key deer and mainland deer identified using mtDNA. To further 

provide evidence, previous to this study I screened an additional seven loci (BM415, K, BBJ11, 

eth152, O, D, BM848), which I chose not to genotype across all samples owing to 

monomorphism within the Key deer samples. The inclusion of these monomorphic loci would 

almost certainly have further decreased the genetic diversity estimates for the Keys. It is not 

surprising that Key deer exhibit such a reduction in genetic diversity relative to their mainland 

white-tailed deer ancestors. In addition to their insularization, Key deer experienced an extreme 

bottleneck due to overexploitation and the population plummeted to about 25 individuals in the 

early 1950s (USFWS 1999).  

Contemporary Demography 

Upon examination of the census estimates for both models in MARK and secr, I found 

that they were similar and ranged from about 987-1012 individuals. Other studies have evaluated 

the census size estimates between secr and other mark-recapture programs (e.g. CAPTURE and 

MARK) and found similar population estimates between programs (e.g Gray & Prum 2012; 
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Rayan et al. 2012). A census size estimate of around 1,000 individuals suggests that the Key deer 

population is continuing to increase from the estimated 25 individuals in the 1950s until present 

or that previous studies have underestimated census size. The last census count of Key deer on 

BPK and NNK estimated 555-619 deer in 2005 (Roberts 2005). In a previous study by Lopez et 

al. (2004), estimating a population size between 453-517 in 2001, they noted that the Key deer 

population on BPK and NNK is increasing at about 5% annually. Based on the 5% annual 

increase starting from the last census estimate in 2005, the Key deer population should consist of 

around 900 individuals, which is similar to my estimate, thus matching the prediction of Lopez et 

al. (2004) and has not yet stabilized.  

The continuous increase of the population since the early 1950s may be due to 1) the 

population recovering and not reaching carrying capacity or 2) recent habitat changes have 

favored the Key deer. Historic population size has been estimated to be between 600-700 

individuals (Seal et al. 1990) with previous estimates of carrying capacity to be around 607 

(Harveson et al. 2006). However, my current estimate exceeds historical estimates and carrying 

capacity. Thus, my data suggest that carrying capacity has not been reached. Humans may have 

artificially increased their carrying capacity by the addition of fresh water and food (Peterson et 

al. 2005). In fact, Key deer have increased their use of urban developments from the times of 

1970-2000 (Harveson et al. 2007). Even with few houses providing additional sustenance, the 

extra resources can significantly influence population dynamics (Peterson et al. 2005).  

Previous work on sex ratio in Key deer focused on two separate life-history stages and 

found contrasting results. In two different studies (Hardin 1974; Folk & Klimstra 1991), the fetal 

sex ratio was observed to be skewed towards males. Contradictory to the fetal sex ratio, Lopez 
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(2001) reported an adult female-biased (approximately 3:1) sex ratio during an observational 

study. My results support a pattern similar to Lopez (2001); however, my results suggested a 

more striking 13:1 female: male adult sex ratio. Here, the explanation for the extreme female-

biased sex ratio does not likely have natural causes. Rather, road mortality data likely play a role 

in skewing the sex ratio.  Specifically, studies have revealed a greater number of male deaths 

each year caused by deer-vehicle collisions (DVCs; Lopez et al. 2003). Moreover, deer behavior 

is a likely culprit as to why DVCs favor male deer. Similar to mainland white-tailed deer, Key 

deer males are the primary dispersers (Lopez 2001), making them more likely to move across 

roads than female deer and collide with vehicles.  

Persistence Modeling 

I utilized both genetic and demographic data to evaluate the persistence of Key deer for 

the next 50 years. The genetic data informed the number of populations to be equal to one, 

consisting of all individuals found on BPK and NNK and provided the input of allele frequency 

data into the model to evaluate loss of genetic diversity. The demographic data informed the 

initial census size for all models and provided information with regard to the adult sex ratio. 

Surprisingly, only two variables (female survival and fetal sex ratio) were the main drivers of 

species persistence. The models illuminated the importance of females within the Key deer 

population. Variables that increased the number of females increased the likelihood of long-term 

persistence. On the other hand, the number of males does not influence time to extinction. 

Assuming that Key deer, similar to mainland white-tailed deer and other ungulates, are 

polygamous (Clutton-Brock 1989), I should expect that it would require few males to sustain the 

population. In other words the limiting factor, with regard to long-term persistence of Key deer, is 
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the number of females. When evaluating the combined role of fetal sex ratio and female survival, 

this study revealed that the tipping point for species persistence in the Key deer is near 66% fetal 

sex ratio, 28% female fawn survival, and 18% adult female density-dependent survival. Values 

less favorable lead to extinction while values more favorable lead to growth capped at carrying 

capacity.  

In summary, Key deer provided a model system in which to use modern genetic 

techniques to evaluate questions related to traditional genetic data (e.g. genetic structure and 

diversity) and demography. I found that Key deer are genetically isolated from mainland white-

tailed deer and contain reduced levels of genetic diversity. However, they contain enough genetic 

diversity to identify individual deer to estimate census size using genetic tagging. Through 

genetic mark-recapture, I found that the Key deer population is continuing to increase from their 

historic population size of around 25 individuals. To evaluate population stability in Key deer, 

management should continue to monitor the census size of the population. Moreover, because 

females are critical for Key deer survival, future studies should focus on obtaining more accurate 

estimates of fetal sex ratio and methods to reduce female mortality. Ultimately, I provide 

evidence that Key deer are recovering and under continued management practices, I expect their 

continued persistence into the next 50 years.  
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APPENDIX A: FIGURES 
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Figure 1. Map of sampling locations. Samples were collected from six counties within Florida to 

represent the Florida mainland population. Ohio and West Virginia samples were collected as 

outgroup samples. 
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Figure 2. Sampling locations of Key deer. BPK and NNK are the easternmost islands in the 

Lower Keys of Florida. Sampling session one is denoted by pink dots; second session by green 

dots. 
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Figure 3. Amplification cycle of fecal samples. Samples were run repeatedly until a clear peak was distinguishable or until a 

sample went through the cycle two times per locus. 

 



 

29 
 

 

Figure 4. Haplotype network of samples collected in this study. As shown, the haplogroup containing the Keys and Collier 

County are several basepairs away from the next related haplotypes. Samples from Orange County are not shared with any of the 

other populations.  
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Figure 5. New World deer phylogeny based on the cytb gene. Posterior probabilities, greater than 0.5, are indicated at their 

respective nodes. Samples used in this study are named according to their haplotype number. The remaining samples found in 

the phylogeny were obtained from GenBank. Numbers next to taxon name correspond to the GenBank accession numbers in 

Table 1. Outgroups: Rangifer tarandus and Capreolus capreolus. 
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Figure 6. Output of the STRUCTURE analysis when K=2. The output shows structure between the Keys (Keys=1) and mainland 

(Collier=2, Orange=3, Monroe=4, Palm Beach=5) with no structure within the Keys or mainland. 
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Figure 7. VORTEX simulations for persistence of Key deer. All six graphs are shown with changing fetal sex ratios, but each 

graph varies according to female mortality. (A) Decreased and constant mortality, (B) baseline and constant mortality, (C) 

increased and constant mortality, (D) decreased density-dependent mortality, (E) baseline and density-dependent mortality, and 

(F) increased and density-dependent mortality. 
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APPENDIX B: TABLES 
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Table 1. GenBank samples used in phylogeny. Sample names given correlate to taxa naming. 

Citations correlate to studies which generated the sequence and accession number refers to 

GenBank. 

Name in Phylogeny Citation Accession Number 

O. virginianus 1 Pitra et al. 2004 AY607035 

O. virginianus 2 Gilbert et al. 2006 DQ379370 

O. virginianus 3 Hassanin et al. 2012 JN632671 

O. virginianus 4 Hassanin et al. 2012 JN632672 

O. virginianus 5 Cronin et al. 2006 DQ673136 

O. virginianus 6 Hassanin et al. 2012 JN632673 

O. hemionus 1 Hassanin & Douzery 1999 AF091630 

O. hemionus 2 Naidu et al. 2012 HM222707 

O. hemionus 3 Hassanin et al. 2012 JN632670 

Mazama temama 1 Unpublished KC146956 

Mazama temama 2 Unpublished KC146957 

Mazama temama 3 Unpublished KC146958 

Mazama temama 4 Unpublished KC146959 

Mazama americana 1 Hassanin et al. 2012 JN632657 

Mazama americana 2 Hassanin et al. 2012 JN632656 

Mazama pandora  1 Unpublished KC146954 

Mazama pandora  2 Unpublished KC146955 

Pudu mephistophiles Hassanin et al. 2012 JN632691 

Mazama rufina Hassanin et al. 2012 JN632661 

Pudu puda Hassanin et al. 2012 JN632692 
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Name in Phylogeny Citation Accession Number 

Mazama nemorivaga 1 Hassanin et al. 2012 JN632659 

Mazama nemorivaga 2 Hassanin et al. 2012 JN632660 

Blastocerus dichotomus Hassanin et al. 2012 JN632603 

Hippocamelus antisensis Hassanin et al. 2012 JN632646 

Hippocameuls bisulcus 1 Duarte et al. 2008 DQ789177 

Hippocameuls bisulcus 2 Duarte et al. 2008 DQ789178 

Mazama gouazoupira Hassanin et al. 2012 JN632658 

Ozotocerus bezoarticus Hassanin et al. 2012 JN632681 

Rangifer tarandus Unpublished NC_007703 

Capreolus capreolus Hassanin et al. 2012 JN632610 
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Table 2. Primers and PCR conditions for microsatellite data generated for Key deer.  All PCR 

reactions were run using a standard protocol (see Methods).  Concentration of MgCl2 and primer 

annealing temperatures varied by locus (TA). Error rates within noninvasive samples are 

calculated from the re-amplification of 16 samples. 

Locus Citation [MgCl2] TA Error rate 

BL25 Bishop et al. 1994 2.0mM 52 N/A 

ILSTS011 Brezinsky et al. 1993 2.0mM 52 6.25% 

OarFCB193 Talbot et al. 1996 2.0mM 52 0% 

INRA011 Vaiman et al. 1992 2.0mM 52 0% 

Cervid1 DeWoody et al. 1995 2.5mM 52 25% 

P Jones et al. 2000 2.0mM 52 0% 

R Jones et al. 2000 3.5mM 52 12.5% 

IGF1 Kirkpatrick 1992 3.0mM 52 6.25% 

N Jones et al. 2000 2.0mM 52 18.75% 

Rt9 Wilson et al. 1997 3.0mM 54 12.5% 

BM4107 Talbot et al. 1996 2.5mM 52 12.5% 

Q Jones et al. 2000 2.0mM 52 0% 
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Table 3. Final parameters input into program VORTEX. All data input into the persistence model 

were based on results from this study, previously published Key deer literature, or standard 

VORTEX values. During model examination, parameters in bold were evaluated for impacts on 

species persistence. The (†) illustrates values used in the standard model when multiple values 

were evaluated, yet variation  did not influence likelihood of extinction. Parameters italicized 

were used in sensitivity analyses due to their importance in species persistence. 

Parameter Value Source 

Inbreeding 

depression 

Inbreeding depression = 0, 3, 6.29*†, 12 *Standard value given by 

VORTEX 

 Percent due to recessive lethal alleles = 25, 50*† *Standard value given by 

VORTEX 

Reproductive 

system 

Polygynous* *Based on white-tailed deer 

(Clutton-Brock 1989) 

 Age of first offspring females = 1* *(USFWS 1999) 

 Age of first offspring males = 2* *(USFWS 1999) 

 Maximum lifespan = 7* *(Lopez et al. 2003) 

 Maximum number of broods per year = 1* *(USFWS 1999) 

 Maximum number of progeny per brood = 3* *(USFWS 1999) 

 Sex ratio at birth -- in % males = 59, 66, 74 See Methods 

 Maximum age of female reproduction = 7* *(Lopez et al. 2003) 

 Maximum age of male reproduction = 3*†, 7 *(Klimstra 1992) 

Reproductive 

rates 

% adult females breeding = 82* *(Folk & Klimstra 1991) 

 SD in % breeding due to EV = 10* *Standard value given by 

VORTEX 

 Distribution of number of offspring per female per 

brood (4 combinations tested: 1, 2, 3 offspring 

respectively):  

*(Folk & Klimstra 1991; 

USFWS 1999) 

               Combination 1 = 83, 17, 0  

               Combination 2 = 60, 40, 0      

               Combination 3 = 20, 50, 30  

               Combination 4*† = 82, 17, 1  

Mortality rates Females = See Methods (Lopez et al. 2003) 

 SD due to EV = 0.1* *Standard value given by 

VORTEX 

 Males – Age 0-1 = 28, 32*† *(Lopez et al. 2003) 

 Males – Age 1-2 = 18, 39*†, 50 *(Lopez et al. 2003) 

 Males – Age after age 2 = 18, 39*†, 50 *(Lopez et al. 2003) 

 SD due to EV = 0.1* *Standard value given by 

VORTEX 
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Parameter Value Source 

Catastrophes  Number of catastrophes = 2* *Standard value given by 

VORTEX 

 Frequency = 1†, 50 Modeled range from 1%-50% 

and showed no change 

 Severity – Reproduction = 1* *(Lopez et al. 2003) 

 Survival = 1* *(Lopez et al. 2003) 

Mate 

Monopolization 
Males in breeding pool = 25, 100† Modeled range from 25%-

100% and showed no change 

 

Initial population 

size 

Population size = 1006* *This study 

 Stable Age Distribution with no males surviving 

after age 3* 

*(Klimstra 1992) 

Carrying capacity 250, 607, 1500*†, 2000 *This value represents a 50% 

increase over estimated census 

size 

Harvest None Phillip Hughes (pers. comm) 

Supplementation None Phillip Hughes (pers. comm) 

Genetics Additional loci only and 11 neutral loci to be 

modeled 

This study 
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Table 4. Genetic diversity for five populations of mainland Florida white-tailed deer. Genetic diversity shows number of 

individuals used (n), number of haplotypes, number of segregating sites, nucleotide diversity (п), haplotype diversity (h) and 

allelic richness. Nucleotide diversity, haplotype diversity, and allelic richness are reported as mean ± standard error. 

 Mitochondrial diversity     Microsatellite diversity 

 

Population 

 

n 

No. of 

haplotypes 

No. of 

segregating 

sites 

 

П 

 

h 

   

n 

Allelic 

richness 

Keys 34 1 0 0 0  185 3.747±0.354 

Collier 21 5 44 0.018±0.000 0.714±0.01

4 

 30 5.349±0.551 

Orange 27 7 47 0.019±0.000 0.769±0.01

1 

 30 5.509±0.586 

Monroe 4 1 0 0 0  10 5.076±0.435 

Palm 

Beach 

7 1 0 0 0  8 5.266±0.452 
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Table 5. Pairwise FST values between populations. The Keys have the highest amount of 

differentiation when compared to other populations. Within the mainland, there is little 

differentiation between populations. Numbers in bold are significantly greater than zero.  

Population Keys Collier Orange Monroe Palm Beach 

Keys — — — — — 

Collier 0.204 — — — — 

Orange 0.202 0.041 — — — 

Monroe 0.207 0.022 0.074 — — 

Palm 

Beach 
0.155 0.052 0.040 0.057 — 
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Table 6. Models tested and AICc scores and weight for census size. The two best models for each 

method are in bold. See text for contents of these models. 

Program Model AICc AICc weight Census 

Estimate 

MARK {N, p(constant)=c(constant)} -1139.65 0.18 1012.97 

MARK {N, p(time) = c(time)} -1142.74 0.82 986.69 

secr g0 883.98 0.17 1006.93 

secr g0t 880.86 0.83 1006.93 
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